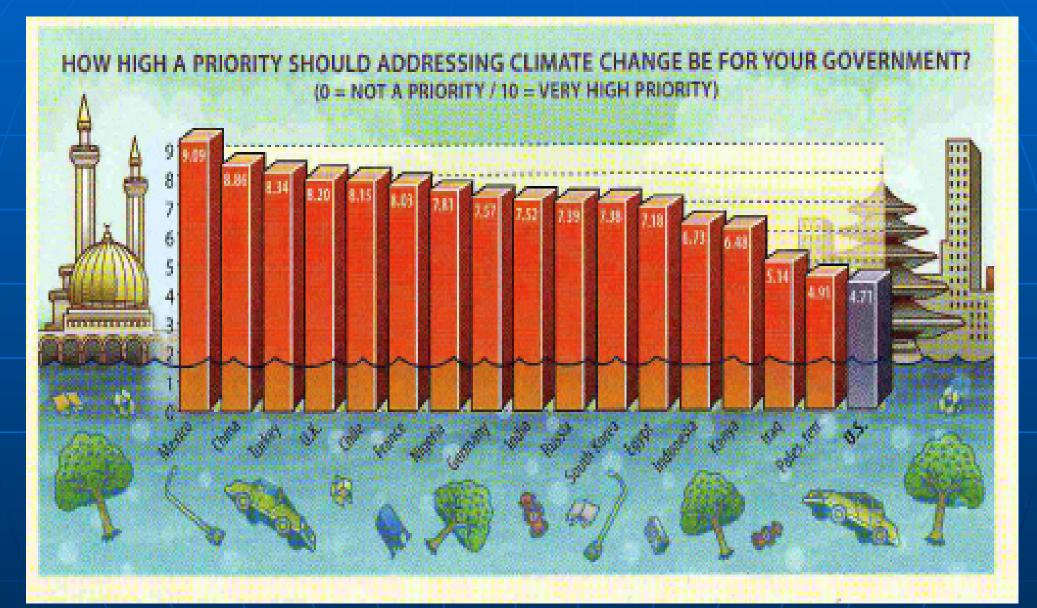
High-Speed Rail Summary Presentation for Silicon Valley Young Democrats

August 19, 2013

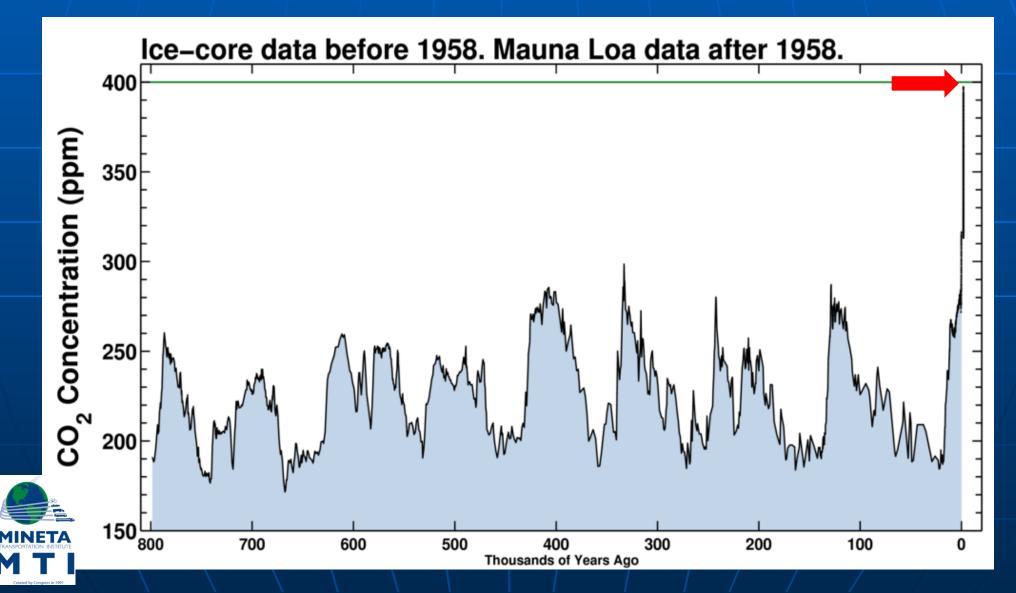
Rod Diridon Sr. Chair, US High Speed Rail Association


Past Chair Intercity High Speed Rail Committee American Public Transit Association

Chair Emeritus California High Speed Rail Authority Board

Executive Director Mineta National Transit Research Consortium Mineta Transportation Institute

First, Some Perspective from the UN



Heat-Trapping Gas Passes Milestone, Raising Fears

May 11, 2013

San Jose Mercury News Front Page, August 8, 2013

State report says global warming's wrath has already arrived

By Paul Rogers

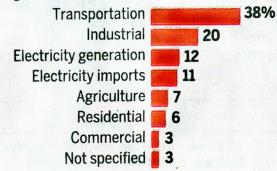
progers@mercurynews.com

Rising ocean waters. Bigger and more frequent forest fires. More brutally hot summer days.

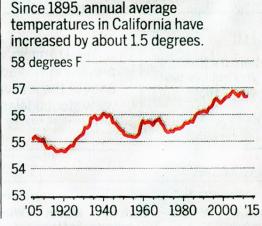
These aren't the usual predictions about global warming based on computer forecasts. They're changes already happening in California, according to a detailed new report issued Thursday by the California Environmental **Protection Agency.**

Climate change is "an immediate and growing threat" affecting the state's water supplies, farm industry, forests, wildlife and public health, the report says. The 258-page document was written by 51 scientists from the Univer-

sity of California, Scripps Institution of Oceanography, Lawrence Berkeley National Laboratory, U.S. Geological Survey and the National Oceanic and Atmospheric Administration, among other agencies and institutions.

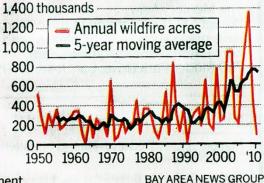

"Climate change is not just some abstract scientific debate," said California EPA Secretary Matt Rodriguez. "It's real, and it's already here."

Most Californians seem to agree. In a poll last month by the nonpartisan Public Policy Institute of California, 63 percent of the state's residents said the effects of global warming are already being felt, while 22 percent


See WARMING, Page 8

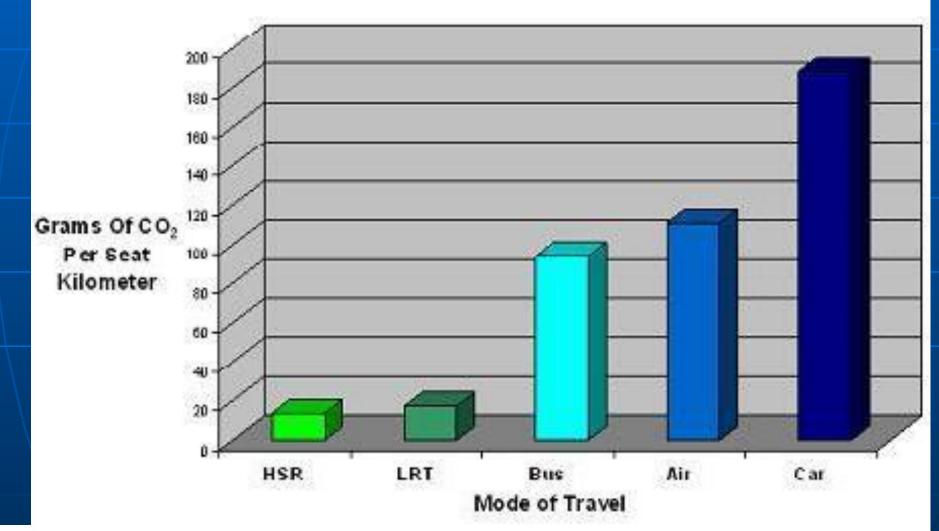
Sources of emissions

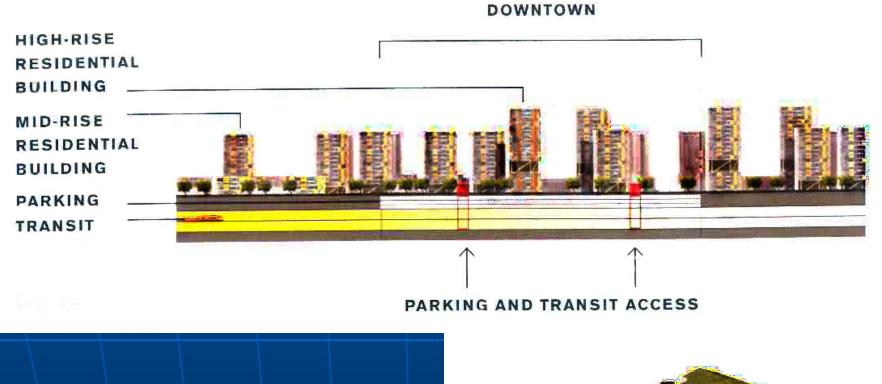
Transportation, industry and electrical generation account for 81 percent of all greenhouse gas emissions in California.

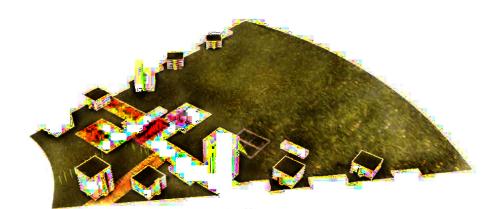


Rising temperatures

More severe fires


The average annual acreage burned in wildfires in the state since 2000 is almost twice as high as the 1950-2000 average.


Source: Indicators of Climate Change in California, Office of Environmental Health Hazard Assessment


Carbon Footprint Mode Comparison

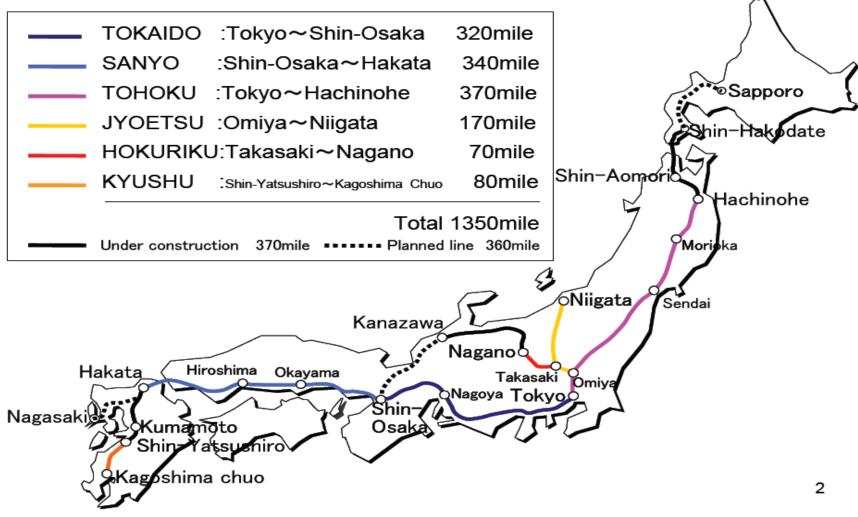
Transit Communities

ALONG WALKWAYS

Source: "Centers for the Bay Area: Walkable Communities on Transit" by Peter Lydon

High Speed Rail System in Asian Countries

§ Korea:	KTX
§ Japan:	Shinkansen
§ Taiwan:	HSR 700T
§ China:	CRH Systems


High Speed Rail in Japan Shinkansen System

- Opened in 1964
- Total Service Mileage: 1,500+ miles
- Operated by 4 Private Japan Railway Companies
- Total Fleet approx. 4,000 cars
- Max. 12 Trains during peak hour
- Up to 350 km/h operation

High Speed Rail in Japan Route Map

SHINKANSEN NETWORK

High Speed Rail in Japan New Train set N700 Series

High Speed Rail in Korea KTX

n Korean High Speed Rail:

n Between Seoul and Busan
 • TGV based design.
 • Total 46 train sets:

 12 trains by Alstom
 34 trains by Hyundai-Rotem
 Max Speed: 300 km/h

High Speed Rail in Taiwan

- Opened: January 5, 2007
- Total length:
- Max Speed:

345 km 300+ km/h

• 12 car trains, total 30 train sets

High Speed Rail in Taiwan Route Map

High Speed Rail in Taiwan HSR 700T Series

High Speed Rail in China

Mid to Long Range Rail Transportation
 Improvement Plan is on-going.

200 – 250 km/h Lines: 11,000 km, mostly dedicated for passenger, some freight.

360 km/h Lines: 13,000 km, dedicated for passenger services.

High Speed Rail in China Route Map

European HSR

Major players:		Other countries with HSR :
– Spain – France – Germany – Italy		 Holland Belgium England Sweden, etc.
Units:	200 kph - 250 kph - 300 kph - 350 kph -	125 mph 155 mph 186 mph 217 mph

Europe 2025

AVE S 100

AVE

AVE S 102

AVE S 103 (ICE-3)

France: Speed records

- Long distance: 1067 km in 3hr 29min □ average speed 305 KPH! (TGV Réseau: Calais to Marseille May 26, 2001)
- Top speed: 574.8 KPH, 357.2 MPH (April 3^{rd,} 2007)!

Train-Consist:

- •Two TGV-EST locomotives and two powered Jacobs bogies (AGV).
- •12 powered axles of 16 total
- Total power 20 MW!

Next Generation TGV = AGV

n Major differences:

- Distributed power (EMU rather than locomotive design)
- Powered Jacobs-Bogie
- Reduced axle load
- Permanent magnet
 motors (synchronous motors)
- Improved aero-dynamics
- More passenger space (no locomotive)

Germany: Rolling Stock

Туре	Design	Vmax	Trains	In Service
ICE-1	Siemens	280 kph	60	1982
ICE-2	Siemens	280 kph	44	1989
ICE-3	Siemens	330 kph	72	2000

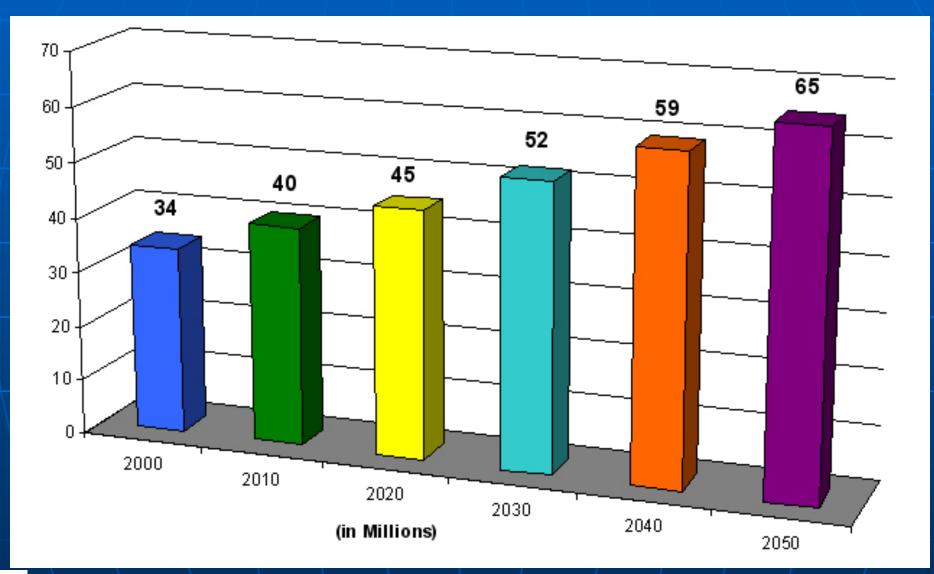
ICE-2

ICE-3

Italy: Rolling Stock

Туре	Design	Vmax	Trains	In Service
ETR 500 (P)	Ansaldo/Bombardier	300 kph	60	1982

Federally Designated HSR Corridors



US Federal HSR Funding, May 2011

Project	States	Total Investment	New Miles	Upgrades Miles	Top Speed (mph)
California	CA	\$3.4 billion	800	880	220; 110
Northeast Corridor	9 Sates	\$1.65 billion	0	363	150
Chicago - St. Louis	IL, MO, KS	\$1.3 billion		570	110
Michiana	IL, IN, MI	\$1.052 billion		300	90
Hiawatha	WI, MN	\$823 million	32	144	110
Southeast	VA, NC	\$639 million		480	110
Pacific Northwest	OR, WA, BA	\$598 million		437	79
3-C Corridor	OH	\$400 million	250		79
Empire Corridor	NY	\$144 million		462	110
Albany - Burlington	NY, VT	\$50 million	67		79
Vermonter	NY, CT, MA, VT	\$40 million	11	261	90
Downeaster	ME	\$35 million	30		79
Keystone Corridor	PA	\$26 million		111	110
Iowa	IA	\$17 million			79
Albany - Montreal	NY, Quebec	\$7 million		3	79
Fort Worth	ТХ	\$4 million			79
Total	32 states	\$10.185 billion	1274	4011	
	Cre	ated by Mineta Tra	nsportation Institu	ıte	

M

California 's Projected Population

Sources: U.S. Census Bureau; Projections - CA Dept. of Finance

Created by Mineta Transportation Institute

ΜΙ

California High-Speed Rail Authority

- n Authorized by legislation in 1996
- Nine-member authority board five appointed by Governor, two by State Senate, two by State Assembly
- $_{\rm n}$ Budget expended in state/federal funds to date, \$800M+
- Program level Environmental Clearance certified on July 9, 2008
- n Project level Environmental Clearance and first construction contract, December 2012

California HSR with Stations and Feeders

790 Miles 26 Stations

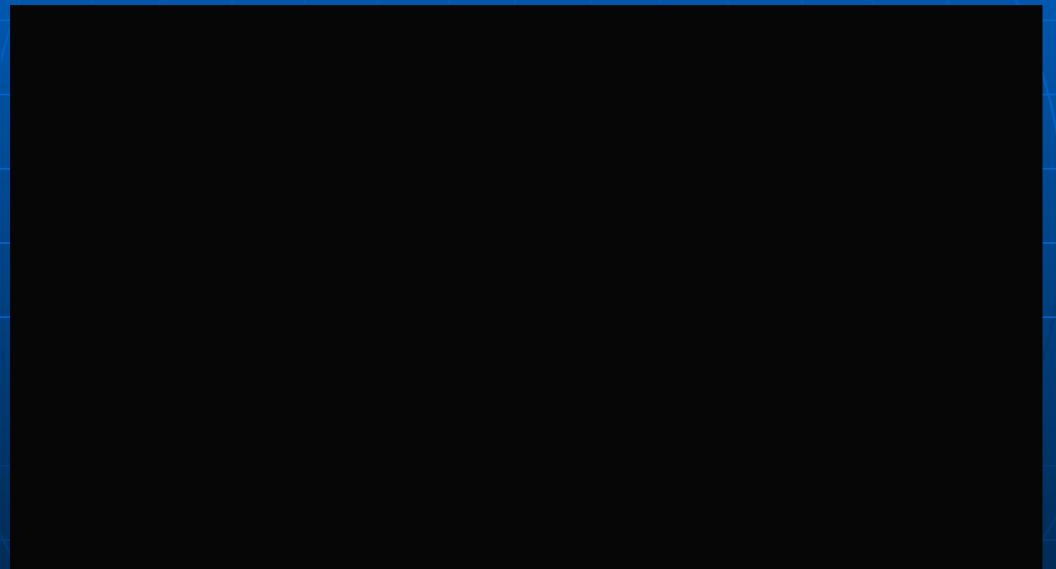
CHSRA Central Valley Starter

ⁿ The five design-build teams are listed in alphabetical order:

FIRM	Small Business (SB) Contact	NON-SB CONTACT
CALIFORNIA BACKBONE BUILDERS	Christopher Smith csmith@ferrovial.us.com (512) 637–8592	Christopher Smith csmith@ferrovial.us.com (512) 637–8592
CALIFORNIA HIGH-SPEED RAIL PARTNERS	Lynn Romano Lynn.romano@fluor.com (949) 349–2896	Chuck Lines Chuck.lines@fluor.com (949) 349-4512
CALIFORNIA HIGH-SPEED VENTURES	Verenise Di Salvi Verenise.DiSalvi@Kiewit.com (707) 439–7300 Ext. 7357	Jeff Riley Jeff.riley@kiewit.com (707) 439–7300
DRAGADOS/SAMSUNG/PULICE A JOINT VENTURE	Jeff Gergal jgergal@dragados-usa.com 858-200-4052	Chad Mathes cmathes@Dragados-USA.com (657) 229-7805
TUTOR PERINI/ZACHRY/PARSONS	Sarah Morris Sarah.Morris@tutorperini.com Phone: (818) 362-8391 Ext. 5637 or Mike Barge Mike.Barge@tutorperini.com Phone: (818) 362-8391 Ext. 5572	Gerald Brown Jerry.brown@tutorperini.com (818) 362–8391

CHSRA Phased Expansion

Section	Length (approx)	Endpoints	Service Description	Service Start	Cumulative Costs (YOE\$, billions)
Initial Operating Section	300 Miles	Merced to San Fernando Valley	 One-seat ride from Merced to San Fernando Valley Closes north-south intercity rail gap, connecting Bakersfield and Palmdale and then into Los Angeles Basin Begins with construction of up to 130 miles of HSR track and structures in the Central Valley Private sector operator Ridership and revenues sufficient to attract private capital for expansion Connects with enhanced regional/local rail for blended operations, with common ticketing 	2022	\$31
Bay to Basin	410 Miles	San Jose and Merced to San Fernando Valley	 One-seat ride between San Francisco and San Fernando Valley (1) Shared use of electrified/upgraded Caltrain corridor between San Jose and San Francisco Transbay Transit Center First HSR service to connect the San Francisco Bay Area with the Los Angeles Basin 	2026	\$51


CHSRA Phased Expansion (Cont.)

Section	Length	Endpoints	Service	Service	Cumulative
	(approx)		Description	Start	Costs (YOE\$, billions)
Phase 1 Blended	520 Miles	San Francisco to Los Angeles/ Anaheim	 One-seat ride between San Francisco and Los Angeles (1) Dedicated HSR infrastructure between San Jose and Los Angeles Union Station Shared use of electrified/upgraded Caltrain corridor between San Jose and San Francisco Transbay Transit Center Upgraded Metrolink corridor from LA to Anaheim 	2029	\$68

California HSR Corridor

San Jose Animation

Diridon Station

San Francisco Bay Area Transit Integration

Commuter Rail

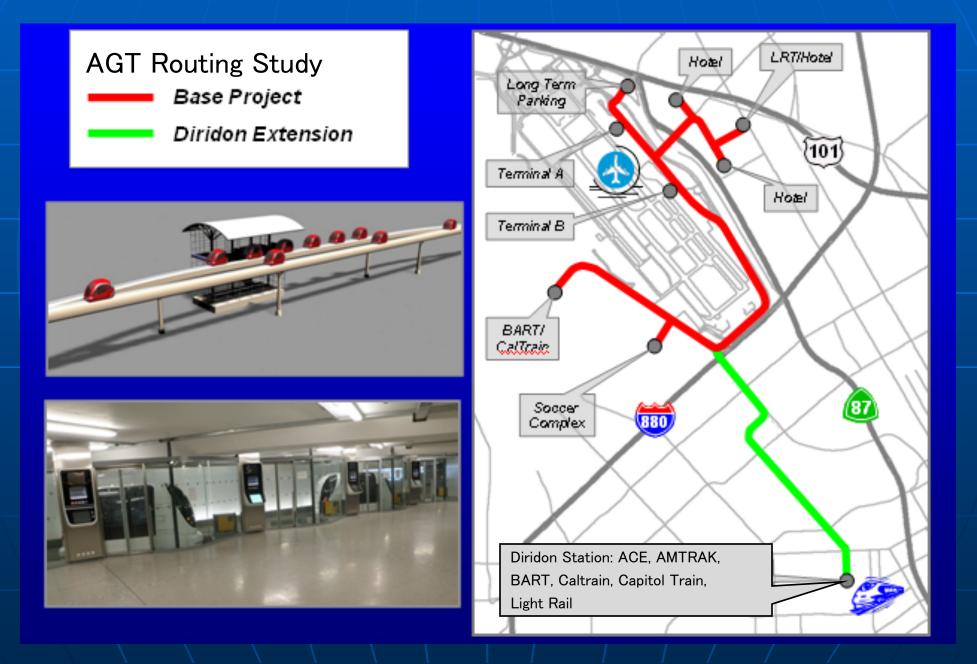
- Caltrain, ACE, Amtrak, Capitols

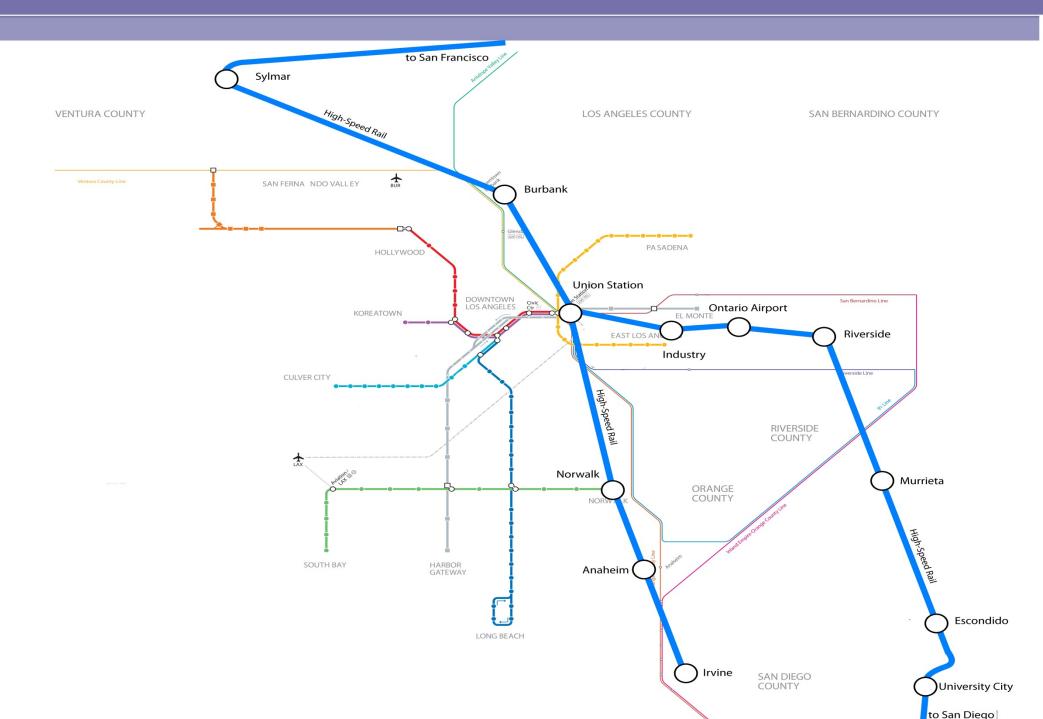
BART Rapid Transit

- Existing
- Silicon Valley Extension

Light Rail Transit

- Existing
- Vasona/Capitol Extensions
- Potential Future Corridors
- Bus, Local & Express Service
- Proposed High Speed Rail
- Multimodal Station Hubs
 - Downtown Diridon Station
 - SJ Mineta International Airport





San Jose 's AGT Project

Cal HSR, LA Metro, and Metrolink Commuter Rail

LA Union Station Amtrak Intercity Connections

San Diego Connections

Innovations to Support HSR

ⁿ Controlling Issue

- In California and most US states, the cities control land use. Therefore, the cities or legal combinations of local governments must approve the implementation of innovative technologies.
- City councils rarely share land use control, and then typically only via joint exercise of power authorities (JPA) controlled by local elected delegates.
- JPAs are created to meet obvious pressing needs.
- Actions by JPAs require approval of every organizational member of the agreement.

FTA National Environmental Protection Act Process

ⁿ The Pressing Need

Rampant climate change and near-terminal gridlock

n Local Action

 Local elected leaders propose creation of a JPA to meet the need in a specific corridor or system element; completes a locally funded concept study.

ⁿ JPA/FTA Environmental Clearance

 With the objective review of FTA, the JPA conducts an alternative analysis of every corridor, station location, mode, grade-level development, and operational alternative in terms of both economic and environmental impacts. THIS IS THE KEY STEP, WHICH MUST BE DONE BY BROADLY KNOWLEDGABLE AND OBJECTIVE CONSULTANTS.

Certification of the EIR, Design/Build RFP


- ⁿ With FTA concurrence and after many public meetings, the JPA approves and certifies selection of the preferred alternatives.
- ⁿ Grant and/or community funding is obtained for a design/build bid, and the construction project proceeds. Funding might consist of local government pooled revenue, state and federal grants, and/or PPP.

Construction, Building Public Confidence

- The construction project must be delivered on budget and schedule, and with minimum community disruption, otherwise the remainder of the system will not be allowed to be built.
- ⁿ The next corridor or systems element should begin as quickly as possible to maintain momentum.

California Project Size

California High-Speed Train Project

Sta

110 Power Supply, Switching and Paralleling Sub-Stations

California Project Size

California High-Speed Train Project

215 Million Cubic Yards of Earthwork

9.2 Million Cubic Yards of Concrete

4.5 Million Tons of Steel

1,600 Miles of Track 2,400 Miles of Electrical and

Communication Cables

126,000 Construction Jobs

14,000 Operations and Maintenance Jobs

32,000 Engineering and Management Jobs

Contact Information

Mineta Transportation Institute's **National HSR Policy Center 210 North Fourth Street** Fourth Floor San Jose CA 95112 USA +1-408-924-7560www.transweb.sjsu.edu